(Ⅰ)证明:连接AC,则F是AC的中点,在△CPA中,EF∥PA,
∵PA?平面PAD,EF?平面PAD,
∴EF∥平面PAD;
(Ⅱ)解:如图,取AD的中点O,连接OP.
∵PA=AD,∴PO⊥AD.
∵侧面PAD⊥底面ABCD,侧面PAD∩底面ABCD=AD,
∴PO⊥平面ABCD.
∵E为PC的中点,
∴三棱锥F-DEC的高为h=
PO,1 2
∵PA=PD=
AD,且AD=a,
2
2
∴PO=
,a 2
∴h=
,a 4
∴三棱锥F-DEC的体积是VE-FDC=
S△FDCh=1 3
?1 3
a?1 2
a?1 2
a=1 4
a3;1 48
(Ⅲ)解:存在点G满足条件,证明如下:
设点G为AB中点,连接EG、FG.
由F为BD的中点,∴FG∥AD,
由(I)得EF∥PA,且FG∩EF=F,AD∩PA=A,
∴平面EFG∥平面PAD.
∵侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,AD⊥CD,
∴CD⊥平面PAD.
∴CD⊥平面EFG.
∵CD?平面PDC,
∴平面PDC⊥平面EFG.
AB的中点G为满足条件的点.