(2010?肥城市模拟)如图,在各棱长均为2的三棱柱ABC-A1B1C1中,侧面A1ACC1⊥底面ABC,∠A1AC=60°.(Ⅰ

2025-05-07 23:12:03
推荐回答(1个)
回答1:

(Ⅰ)∵侧面A1ACC1⊥底面ABC,作A1O⊥AC于点O,
∴A1O⊥平面ABC.又∠ABC=∠A1AC=60°,且各棱长都相等,
∴AO=1,OA1=OB=

3
,BO⊥AC.(2分)
故以O为坐标原点,建立如图所示的空间直角坐标系O-xyz,则
A(0,-1,0),B(
3
,0,0),A1(0,0,
3
),
C(0,1,0),
AA1
=(0,1,
3
)

A
B
=(
3
,2,
3
),
AC
=(0,2,0)
.(4分)
设平面AB1C的法向量为n=(x,y,1)
n?
A
B
3
x+2y+
3
n?
AC
=2y=0

解得n=(-1,0,1).(6分)
由cos<
AA1
,n
>=
A
A
?n
|
AA1
|?|n|
3
2
2
6
4

而侧棱AA1与平面AB1C所成角,
即是向量