(Ⅰ)∵侧面A1ACC1⊥底面ABC,作A1O⊥AC于点O,
∴A1O⊥平面ABC.又∠ABC=∠A1AC=60°,且各棱长都相等,
∴AO=1,OA1=OB=
,BO⊥AC.(2分)
3
故以O为坐标原点,建立如图所示的空间直角坐标系O-xyz,则
A(0,-1,0),B(
,0,0),A1(0,0,
3
),
3
C(0,1,0),
=(0,1,AA1
);
3
∴
=(A
B
,2,
3
),
3
=(0,2,0).(4分)AC
设平面AB1C的法向量为n=(x,y,1)
则
n?
=A
B
x+2y+
3
3
n?
=2y=0AC
解得n=(-1,0,1).(6分)
由cos<
,n>=AA1
=
?nA
A
|
|?|n|AA1
=
3
2
2
.
6
4
而侧棱AA1与平面AB1C所成角,
即是向量