(x+y+z) 2 =x 2 +y 2 +z 2 +2xy+2yz+2zx≥n(xy+yz+zx), (x 2 +y 2 +z 2 )≥(n-2)(xy+yz+zx)(1), 因为x 2 +y 2 ≥2xy, y 2 +z 2 ≥2yz, z 2 +x 2 ≥2zx, 即2(x 2 +y 2 +z 2 )≥2(xy+yz+zx), (x 2 +y 2 +z 2 )≥(xy+yz+zx)(2) 由(1)(2)可知,要使(1)恒成立,只需使 (xy+yz+zx)≥(n-2)(xy+yz+zx), xy+yz+zx=0时,等号恒成立,n可以取全体实数R, xy+yz+zx>0时,1≥n-2,n最大取3, xy+yz+zx<0时,1≤n-2,n最小取3. 故答案为:3. |