下面这个定积分问题,哪位大神能帮忙解答一下呀

求定积分:∫ln(tanx)dx (o≤x≤π/2),积分是限是π/2,下限是0
2025-05-08 00:07:29
推荐回答(2个)
回答1:

∫ln(tanx)dx
=∫[0,π/2] ln(tanx)dx
=∫[0,π/4]ln(tanx)dx+∫[π/4,π/2]ln(tanx)dx
=∫[0,π/4]ln(tanx)dx+∫[π/4,π/2]lncot(π/2-x)dx
=∫[0,π/4]ln(tanx)dx+∫[π/4,0]lncotud(π/2-u)
=∫[0,π/4]ln(tanx)dx+∫[π/4,0]lntanudu
=∫[0,π/4]ln(tanx)dx-∫[0,π/4]ln(tanu)du
=0

回答2:

∫[0,π/2]ln(tanx)dx
=xlntanx[0,π/2]-∫[0,π/2]xdln(tanx)
第一项是+∞,是不是积分限有问题啊