中子星是如何形成的?
中子星的形成
1.中子星的结构
中子星,是一种主要由中子以及少量的质子、电子所组成的超密恒星。1932年发现中子后不久,朗道就提出可能存在由中子组成的致密星。1934年巴德和兹威基也分别提出了中子星的概念,而且指出中子星可能产生于超新星爆发。1967年英国射电天文学家休伊什和贝尔等发现了脉冲星。不久,就确认脉冲星是快速自转的、有强磁场的中子星。图5-1是典型中子星的结构示意图。它的外层为固体外壳,厚约1千米,密度为1011~1014克/厘米3,主要是由各种原子核组成的点阵结构和自由电子气。外壳内是一层主要由中子组成的流体,其密度大约为1014~1015克/厘米3,在这一层中还有少量的质子、电子和μ介子。对于中子星中心部分的密度高达1016克/厘米3的物态,目前还存在着三种不同的观点:(1)认为是超子(一种质量大于核子质量的粒子)流体;(2)是固态的中子核心;(3)是中子流体中的π介子凝聚。
中子星不仅密度高达1亿吨每立方厘米以上,而且它的磁场强度也高达1亿特斯拉以上。中子星的体积很小,它的半径的典型值约为10千米。中子星的质量下限约为0.1太阳质量,上限为1.5~2个太阳质量。
中子星是由恒星演化而来的。关于中子星的形成,许多人认为:某些处于演化晚期的恒星,在其内部发生极其激烈的核爆炸,随后又急剧收缩,恒星的内部产生极大的压力,把原子外层电子挤压到原子核内,核内的质子与电子结合,形成异常紧密的中子结构物质,这时这颗恒星就演变成为中子星。
银河系中著名的气体星云——蟹状星云的中心星就是一颗中子星(脉冲星)。中子星是目前已知的恒星中最小的。由于中子星的体积很小,所以不能用热辐射接受器观测到。但接收到它们的射电脉冲,在研究脉冲星和双星X射线源时发现了它们。
2.物质的简并态
什么叫“简并态”?我们知道,原子是由原子核和电子组成的,原子的质量绝大部分集中在原子核上,而原子核的体积很小。比如氢原子的半径为一亿分之一厘米,而氢原子核的半径只有十万亿分之一厘米。假如核的大小象一颗玻璃球,则电子轨道将在两公里以外。在巨大的压力之下,电子将脱离原子核,成为自由电子气体。它们将尽可能地占据原子核之间的空隙,从而使单位空间内包含的物质也将大大增多,密度大大提高了。形象地说,这时原子核是“沉浸于”电子中。一般把物质的这种状态叫做“简并态”。这种被压缩于原子核周围的电子气体,称为简并电子气体。处于简并态的物质主要是由如下两部分组成:一是由各种原子核组成的点阵结构;二是自由电子气。
3.简并态临界压力和中子态临压力
当压力刚好使受原子核束缚的电子转变成自由电子时,物质就会进入简并态的临界状态。我们称这个压力为简并态的临界压力,用Pw0来表示。当压力超过Pw0并使自由电子和质子结合为中子时,我们称这个压力为中子态的临界状态,用Pw1来表示。
用P来表示物质所受到的压力。当P
物质的正常状态和简并态是可以互相转变。当P从小于Pw0变为大于Pw0时,物质可以从正常状态转变成简并态。相反,当P从大于Pw0变为小于Pw0时,物质也可以从简并态转变成正常状态。但简并态和中子态却不能相互转变。因为在中子态下,自由电子与质子结合成中子,原子的结构发生了质变。而在简并态下,原子的结构并未发生这种质变。
我们用V0来表示1克物质在正常状态时的体积,用V1来表示1克物质在简并态时的体积,用V2来表示1克物质在中子态时的体积。那么,V0=1011~1014V1,V1≈10V2。也就是说,当物质从简并态转变为正常状态时,它的体积就会在极短时间内膨胀1亿倍以上。
4.超新星的爆炸
我们把恒星分成四个区域。一是核心区域,称之为A区,其半径约为恒星半径的1/4。二是中间区域,称之为B区,其范围在恒星半径的1/4到1/2之间。三是外壳,称之为C区,其范围在恒星半径的1/2到1之间。四是大气层。
现在我们只讨论质量比太阳大三倍以上的恒星。这种恒星的引力十分巨大,A区内的物质将会承受巨大的压力。当恒星从壮年期进入老年期时,A区内的氢将全部聚变为氦,氦聚变成炭等,A区的半径逐渐收缩。巨大的引力可以迫使A区的物质进入简并态。之后,氢的聚变区上移至B区。当B区内的氢消耗完毕时,B区逐渐收缩,也进入简并状态。
暗能量每10亿年按5.3%的比例衰退,引力则每10亿年按约9%的比例衰退,详情请看“暗能量的衰退”。当引力衰退到一定的程度,使得作用在B区表面的压力P
4.中子星的形成
恒星爆炸时会产生巨大的反作用力。它可以把B区的剩余物质和A区物质压缩成中子态。这时,恒星的质量损失了一半以上,恒星的半径也减少了10万倍左右,巨大的恒星就只余下一个星核。恒星的自转动能E=MV2/2≈M(ωR/2)2/2。由于星核的半径是恒星半径的10万分之一倍左右,所以,星核的自转动能比爆炸前恒星的动能减少了1亿倍以上。另一方面,恒星爆炸后,星核周围的暗能量并未减少,巨大的恒星旋涡场收缩到星核的半径范围内。在强大的暗能量推动下,星核会越转越快,其自转动能会不断增大。当星核的自转角速度增大1亿倍左右时,它的自转动能大约与暗能量平衡。这时,暗能量再无力量加快星核的自转,双方就保持着一种平衡状态。结果,恒星爆炸后,星核就变成了一颗中子星,其自转角速度能达到每秒几百转。
推论1:50亿年后,白矮星将会发生爆炸。因为暗能量和引力会继续衰退。当引力衰退至P
推论2:单个中子星不会发生爆炸。因为暗能量的衰退只能使中子星的自转速度变慢,而不能使引力变小。
中子星
中子星
中子星是处于演化后期的恒星,它也是在老年恒星的中心形成的。只不过能够形成中子星的恒星,其质量更大罢了。根据科学家的计算,当老年恒星的质量大于十个太阳的质量时,它就有可能最后变为一颗中子星,而质量小于十个太阳的恒星往往只能变化为一颗白矮星。
典型中子星的直径为20公里,质量约等于太阳的质量。因此,它们的密度极高,约为水的10的14次方倍,大体相当于原子核内部的密度。在某种程度上,中子星可以认为是由其自身引力吸在一起的巨核。在密度最大的中心处,物质据信主要是超子和介子。在中介层则多为中子,而且可能处于“超流”状态。尽管温度可能达到百万度的高温,最外面的1000米还是固体的。外壳由各种原子核组成的点阵结构和简并的自由电子气所组成。外壳内是一层主要由中子组成的流体,在这层中还有少量的质子、电子和μ介子。
对于中子星内部的密度高达10的16次方克/立方厘米的物态,目前有三种不同的看法:①超子流体;②固态的中子核心;③中子流体中的π介子凝聚。在极高密度下,当重子核心彼此重迭得相当紧密时(这种情形有可能出现于大质量中子星的中心部分),物质的性质如何,是一个完全没有解决的问题。中子星的质量下限约为0.1太阳质量,上限在1.5~2太阳质量之间。中子星半径的典型值约为10公里。密度最低的固态表面是高密度的铁。
中子星另一个重要特征是存在强度极高的磁场,超过10的12次方高斯,它使表层的铁聚合成长长的铁原子链:每个原子都被压缩并沿磁场被拉长,而且首尾相接,形成从表面向外伸出的“须状物”。在表面以下,由于压力太高,单个原子不能存在。它使中子星沿着磁极方向发射束状无线电波(射电波)。中子星自转非常快,能达到每秒几百转。中子星的磁极与两极通常不吻合,所以如果中子星的磁极恰好朝向地球,那么随着自转,中子星发出的射电波束就会象一座旋转的灯塔那样一次次扫过地球,形成射电脉冲。人们又称这样的天体为“脉冲星”。1967年发现了脉冲星,首次证明了中子星的存在。现已发现1620多颗脉冲星,普遍认为它们就是旋转的中子星。蟹状星云脉冲星和船帆座脉冲星的脉冲周期极短,说明它们不可能是白矮星。据认为,脉冲星是由于它们的旋转和强磁场而产生的一种电动力学现象,就像发电机的情况一样。另有证据表明,某些双星X射线源也包含着中子星,它们似乎是由于压缩从伴星吸积到它们表面上的物质而发出X射线的。中子星据信是超新星爆发形成的,在该过程中,随着核心密度增至10趵15次方/立方厘米,中子压力便会顶住中心核的坍缩。若坍缩中心核的质量超过太阳质量的2倍,则不能形成中子星而可能变成黑洞。
中子星的外壳
中子星是一种比白矮星密度更大的恒星,主要是由中子以及少量的质子、电子所组成的超密恒星。1932年发现中子后不久,朗道就提出可能存在由中子组成的致密星。1934年巴德和兹威基也分别提出了中子星的概念,而且指出中子星可能产生于超新星爆发。1967年英国射电天文学家休伊什和贝尔等发现了脉冲星。不久,就确认脉冲星是快速自转的、有强磁场的中子星。它的外层为固体外壳,厚约1千米,密度为100万~1亿吨/厘米3,主要是由各种原子核组成的点阵结构和自由电子气。外壳内是一层主要由中子组成的流体,其密度大约为1亿~10亿吨/厘米3,在这一层中还有少量的质子、电子和μ介子。对于中子星中心部分的密度高达10亿吨/厘米3以上的物态,目前还存在着三种不同的观点:
(1)认为是超子(一种质量大于核子质量的粒子)流体;
(2)是固态的中子核心;
(3)是中子流体中的π介子凝聚。子、电子和μ介子凝聚。
中子星不仅密度高达1亿吨每立方厘米以上,而且它的磁场强度也高达1亿特斯拉以上。中子星的体积很小,它的半径的典型值约为10千米,质量下限约为0.1太阳质量,上限为1.5~2个太阳质量.
中子星爆发之前的表面
中子星是由恒星演化而来的。在中子星里,压力是如此之大,电子被压缩到原子核中,同质子中和为中子,使原子变得仅由中子组成。而整个中子星就是由这样的原子核紧挨在一起形成的。可以这样说,中子星就是一个巨大的原子核,中子星的密度就是原子核的密度。
在形成的过程方面,当恒星外壳向外膨胀时,它的核受反作用力而收缩,核在巨大的压力和由此产生的高温下发生一系列的物理变化,最后形成一颗中子星内核。而整个恒星将以一次极为壮观的爆炸来了结自己的生命。这就是天文学中著名的“超新星爆发”。
银河系中著名的气体星云——蟹状星云的中心星就是一颗中子星(脉冲星)。蟹状星云通过X射线发射的能量比它在光学波段的能量高100倍左右。尽管如此,即使在可见光波段,这个星云的光度也是非常巨大的:它的距离为6,300光年,这样它的视亮度对应的绝对星等就是-3.2等左右,超过太阳光度的1000倍。它在所有波段的总光度估计是太阳光度的100,000倍,也就是5*10^38尔格/秒!
中子星是目前已知的恒星中最小的。由于中子星的体积很小,所以不能用热辐射接受器观测到。但接收到它们的射电脉冲,在研究脉冲星和双星X射线源时发现了它们.
天文信息
2007年3月20日光明网-光明日报:欧洲空间局的科学家最近宣布,他们借助强大的“Integral”天文望远镜,发现了迄今转速最快的中子星,每秒旋转1122圈,比地球自转快1亿倍。
最先观测到这颗星的西班牙天文学家库克勒说,早在1999年便已发现了这颗代号为J1739-285的中子星,但不久前才通过望远镜算出它的转速。
这颗中子星的直径约10公里,但质量却与太阳相近,其密度惊人,高达每立方厘米1亿吨。其巨大引力从临近恒星不断夺取大量炙热气体,并不断诱发热核爆炸。
天文学家正是通过这种现象发现了它。此前的中子星自转纪录是每秒716圈,恒星转速一般在每秒270-715 圈。700圈曾被认为是天体旋转极限,按目前的物理学理论,转速超过此极限,恒星将被强大离心力摧毁或化 为黑洞。但最新发现否定了这一看法。
理论上,每秒1122转并不是旋转极限,大型中子星转速有可能高达3000转。令天文学家困惑的是,为什么天体在高速旋转的强大离心力下,却依然会不断收缩,而且不损失自身物质。
在形成的过程方面,中子星同白矮星是非常类似的。当恒星外壳向外膨胀时,它的核受反作用力而收缩。核在巨大的压力和由此产生的高温下发生一系列复杂的物理变化,最后形成一颗中子星内核。而整个恒星将以一次极为壮观的爆炸来了结自己的生命。这就是天文学中著名的“超新星爆发”。
中子星是如何形成的?