求星形线x=a*(cost)^3,y=a*(sint)^3所围成的面积、全长、绕x轴一周所得到的旋转体体积.

如题
2025-12-18 00:15:51
推荐回答(1个)
回答1:

(1)面积S,S'=ydx=-3a^2*(sint)^4*(cost)^2dt,又又知0<=x<=90度,对S'定积分可得S(2)全长L,其导数L'=4*根号[(x')^2+(y')^2]=[9*a^2*(cost)^4*(sint)^2+9*a^2*(sint)^4*(cost)^2]^(1/2)*dt=12a|sint*cost|dt
又知0<=t<=90度,对L'积分得L=6a
(3)体积V,V'=pai*y^2*dx=…,又 0<=t<=a,对V'定积分即可