(2013?房山区一模)在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,ABCD为直角梯形,BC∥AD,∠ADC=90°,BC=CD

2025-05-08 00:28:07
推荐回答(1个)
回答1:

解答:(Ⅰ)证明:连接AC交BE于O,并连接EC,FO,
∵BC∥AD,BC=

1
2
AD,E为AD中点,∴AE∥BC,且AE=BC.
∴四边形ABCE为平行四边形,则O为AC中点.
又F为PC中点,∴OF∥PA.∵OF?平面BEF,PA?平面BEF.∴PA∥平面BEF.
(Ⅱ)解:∵PA=PD,E为AD中点,∴PE⊥AD.
∵侧面PAD⊥底面ABCD,侧面PAD∩底面ABCD=AD,PE?平面PAD,∴PE⊥平面ABCD.
易知 BCDE为正方形,∴AD⊥BE.
建立如图空间直角坐标系E-xyz,

设PE=t(t>0),
则E(0,0,0),A(1,0,0),B(0,1,0),P(0,0,t),C(-1,1,0)
PC
=(?1,1,?t),
AB
=(?1,1,0)

∵PC与AB所成角为45°,
|cos<
PC
AB>
|=|
PC
?
AB
|
PC
||
AB
|
|
=|
(?1)×(?1)+1×1+(?t)×0
2+t2
×
2
|

=cos45°
2
2

解得:t=
2
,∴PE=
2

(Ⅲ)解:∵F为PC的中点,所以F=(?
1
2
1
2
2
2
)

EB
=(0,1,0)
EF
=(?
1
2
1
2
2
2
)

n
=(x,y,z)
是平面BEF的法向量,
则