解答:(Ⅰ)证明:连接AC交BE于O,并连接EC,FO,
∵BC∥AD,BC=
AD,E为AD中点,∴AE∥BC,且AE=BC.1 2
∴四边形ABCE为平行四边形,则O为AC中点.
又F为PC中点,∴OF∥PA.∵OF?平面BEF,PA?平面BEF.∴PA∥平面BEF.
(Ⅱ)解:∵PA=PD,E为AD中点,∴PE⊥AD.
∵侧面PAD⊥底面ABCD,侧面PAD∩底面ABCD=AD,PE?平面PAD,∴PE⊥平面ABCD.
易知 BCDE为正方形,∴AD⊥BE.
建立如图空间直角坐标系E-xyz,
设PE=t(t>0),
则E(0,0,0),A(1,0,0),B(0,1,0),P(0,0,t),C(-1,1,0)
∴
=(?1,1,?t),PC
=(?1,1,0).AB
∵PC与AB所成角为45°,
∴|cos<
,PC
|=|AB>
|=|
?PC
AB |
||PC
|AB
|(?1)×(?1)+1×1+(?t)×0
×
2+t2
2
=cos45°=
,
2
2
解得:t=
,∴PE=
2
.
2
(Ⅲ)解:∵F为PC的中点,所以F=(?
,1 2
,1 2
),
2
2
=(0,1,0),EB
=(?EF
,1 2
,1 2
),
2
2
设
=(x,y,z)是平面BEF的法向量,n
则