∫(0,π)1/(a^2sin^2x+b^2cos^2x)dx
=∫(0,π)1/{b^2cos^2x[(a/btanx)^2+1]}dx
=1/b^2∫(0,π)sec^2x/[(a/btanx)^2+1]dx
=1/b^2∫(0,π)1/[(a/btanx)^2+1]dtanx
=1/b^2×(b/a)∫(0,π)1/[(a/btanx)^2+1]d(a/btanx)
=1/(ab)∫(0,π)1/[(a/btanx)^2+1]d(a/btanx)
=1/(ab)arctan(a/btanx)|(0,π)
你倒过来推一下不就知道了?这不难。难的是怎么想到这么凑!熟能生巧罢了