高中数学。要详细步骤。必选

2025-05-08 21:52:32
推荐回答(5个)
回答1:

采纳哟!

采纳采纳!O(∩_∩)O~

回答2:

(1)f(0)=cos0(λsin0-cos0)+cos²(90°-0)
=-1
f(-π/3)=f(-60°)=cos(-60°)(λsin(-60°)-cos(-60°))+cos²(90°+60°)
=1/2(-√3λ/2-1/2)+cos²(150°)
=-√3λ/4-1/4+3/4=1/2-√3λ/4
由题意得1/2-√3λ/4=-1,所以解得λ=2√3
代入f(x),得f(x)=cosx(2√3sinx-cosx)+cos²(π/2-x)
=2√3sinxcosx-cos²x+sin²x
=√3sin2x-cos2x=2(√3/2*sin2x-1/2*cos2x)=2sin(2x-30°)
所以f(x)的单调递增区间为[-30°,60°]或[-π/6,π/3]
(2)运用余弦定理
(2a-c)(a²+c²-b²)=c(a²+b²-c²)
(2a-c)*2accosB=2abc*cosC

2a*cosB=ccosB+bcosC
2a*cosB=a
cosB=1/2,B=60°
所以f(x)在(0,60°]上的值域为(-1,2]

回答3:

根据题意可得
f(x)=r/2*sin2x-cos²x+sin²x= r/2*sin2x-cos2x
因为f(-π/3)= f(0),所以-√3r/4+1/2=-1,所以r=2√3
所以f(x)= √3sin2x-cos2x
所以f(x)=2sin(2x-π/6),因为正玄函数的单调递增区间为[2kπ, 2kπ+π/2]及[2kπ+3π/2,2kπ+2π],所以2x-π/6在[2kπ, 2kπ+π/2]及[2kπ+3π/2,2kπ+2π],所以函数y=f(x)的单调递增区间为[kπ+ π/12,kπ+π/3]和[kπ+ 5π/6,kπ+13π/12]

回答4:

回答5: