已知实数x,y,z满足x+y+z=5,xy+yz+zx=3,则z的最大值是(  )A.3B.4C.196D.13

2025-05-08 00:46:09
推荐回答(1个)
回答1:

∵x+y=5-z,xy=3-z(x+y)=3-z(5-z)=z2-5z+3,
∴x、y是关于t的一元二次方程t2-(5-z)t+z2-5z+3=0的两实根.
∵△=(5-z)2-4(z2-5z+3)≥0,即3z2-10z-13≤0,
(3z-13)(z+1)≤0.
∴-1≤z≤

13
3

当 x=y=
1
3
时,z=
13
3

故z的最大值为
13
3

故选D.